Traffic of single-headed motor proteins KIF1A: effects of lane changing.
نویسندگان
چکیده
KIF1A kinesins are single-headed motor proteins which move on cylindrical nanotubes called microtubules (MTs). A normal MT consists of 13 protofilaments on which the equispaced motor binding sites form a periodic array. The collective movement of the kinesins on a MT is, therefore, analogous to vehicular traffic on multilane highways where each protofilament is the analog of a single lane. Does lane changing increase or decrease the motor flux per lane? We address this fundamental question here by appropriately extending a recent model [P. Greulich, Phys. Rev. E 75, 041905 (2007)]. By carrying out analytical calculations and computer simulations of this extended model, we predict that the flux per lane can increase or decrease with the increasing rate of lane changing, depending on the concentrations of motors and the rate of hydrolysis of ATP, the "fuel" molecules. Our predictions can be tested, in principle, by carrying out in vitro experiments with fluorescently labeled KIF1A molecules.
منابع مشابه
Intracellular transport by single-headed kinesin KIF1A: effects of single-motor mechanochemistry and steric interactions.
In eukaryotic cells, many motor proteins can move simultaneously on a single microtubule track. This leads to interesting collective phenomena such as jamming. Recently we reported [Phys. Rev. Lett. 95, 118101 (2005)] a lattice-gas model which describes traffic of unconventional (single-headed) kinesins KIF1A. Here we generalize this model, introducing an interaction parameter c, to account for...
متن کاملFormation of helical membrane tubes around microtubules by single-headed kinesin KIF1A
The kinesin-3 motor KIF1A is in charge of vesicular transport in neuronal axons. Its single-headed form is known to be very inefficient due to the presence of a diffusive state in the mechanochemical cycle. However, recent theoretical studies have suggested that these motors could largely enhance force generation by working in teams. Here we test this prediction by challenging single-headed KIF...
متن کاملEffect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A.
Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008)] we developed a stochastic model of interacting single-headed motor proteins...
متن کاملCollective effects in intra-cellular molecular motor transport: coordination, cooperation and competetion
Molecular motors do not work in isolation in-vivo. We highlight some of the coordinations, cooperations and competitions that determine the collective properties of molecular motors in eukaryotic cells. In the context of traffic-like movement of motors on a track, we emphasize the importance of single-motor bio-chemical cycle and enzymatic activity on their collective spatio-temporal organisati...
متن کاملEnergetics of the single-headed kinesin KIF1A.
KIF1A is a single-headed molecular motor that moves processively and unidirectionally along a microtubule by using the chemical energy released by hydrolyzing adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (P(i)). Although the movement of KIF1A seems to have successfully been explained by a simple Brownian motor model of the flashing ratchet type, this mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 77 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2008